Study of hydrological processes for better models and flood estimations

Dr Christophe Joerin
Introduction

• **Actual hydrological context**
 - Increase of preoccupation for climate change
 - Floods prevention

• **Needs**
 - Efficient models
 • Good reproduction of processes and hydrological responses

 Evaluation and prevention of the extreme event consequences

• **Objectives**
 - Improve the comprehension of the hydrological behavior

 Realistic conceptualization of hydrological model
Study area

- The Haute-Mentue watershed (12 km²)
 - Climate
 - Humid and temperate with continental characteristics
 - P = 1250 mm AET= 600 mm
 - Hydrology
 - Seasonal cycle
 (max. discharge in winter)
 - Annual average runoff = 680 mm
 - Geology
 - Molasse
 - Sedimentary deposits (carbonated)
 - Moraine
 - Very low permeability (clay)
 - Pedology
 - Acid soil
 - Soil average depth = 1 m

- Bois-Vuaco sub-basin (24 ha)
 - Soil occupation
 - 100 % forested
Environmental tracing

- Identification of hydrological responses at the catchment scale

- Haute-Mentue three-component mixing model
 - Tracers
 - Silica
 - Contact with the mineral matrix
 - Calcium
 - Contact with the carbonated substratum
 - Components
 - Direct precipitation (DP)
 - Acid soil water (SW)
 - Groundwater (GW)

![Diagram showing relationships between components and tracers with a graph plotting Ca²⁺ and SiO₂ concentrations in different water types.](attachment:image.png)
Hydrograph decompositions

- Spatial and temporal variability
 - Systematic decomposition of main floods observed between 1997-99 in 4 sub-basins

- Hydrological responses
 - Spatial variation
 - Combination of processes which depends on geology and morphology
 - Dominance of process varies in time with wet conditions
 - Similar temporal trend
 - Dry conditions
 - Direct precipitation - groundwater
 - Wet conditions
 - Increase of soil water contribution
Hillslope measurements

• Motivation
 – Environmental tracing
 • Study of hydrological processes at the catchment scale
 • Limitation
 – Mechanisms cannot be identified
 – Equifinality problem
 » Water following different pathways can present the same tracer concentration or a mechanism can involve different kinds of water

Hillslope measurements

• Explanation in process terms of the important contribution of subsurface flows
• Strong influence of wet conditions

Time Domain Reflectometry
Time Domain Reflectometry

- **Principle**
 - Determination of soil moisture
 - Measure of the propagation velocity of an electromagnetic wave in the soil

- **Configuration**
 - 9 multiplexers
 - 64 probes (500 m²)
 - 2 vertically wires of 30 cm
 - Hourly measurements during 8 months
Results of the Time Domain Reflectometry experiment

- **Spatial variability**
 - Wet season
 - Strong variability
 - Example
 - 8 probes
 - 1-8 meters apart
 - Two patterns
 - Big amplitude and rapid drainage
 - Small amplitude and slow drainage

![Graph](image)
Association of TDR and environmental tracing

- Same measurements period
 - Similar dynamic
 - Maximum at the same time
- Confirmation
 - Soil water is a potential component
 - Soil is almost saturated
 - Mobile water
- Subsurface flows
 - Not homogeneous within hillslope
 - Lateral rather than vertical
 - Saturated soil
 - Shallow "impermeable" layer
 - Hypothesis of preferential flows
 - Macropores
 - Observations in the field
 - Identification during a rainfall simulator experiment
Rainfall simulator

- **Motivation**
 - Study of soil infiltration capacity
 - Explanation of the important soil water contribution

- **Principle**
 - Application of rainfalls
 - Intensity 40 - 120 mm/h
 - Collection of the surface runoff
 - Five locations

- **TDR measurements**
 - Record of soil water content during the experiment

© 2005, Christophe Joerin, Bern
Results of the rainfall simulator experiment

• Example
 - Two plots 20 m apart
 - Same intensity 60 mm/h and duration 30 min
• Plot 1
 - Important surface flow
 - Very slow drainage
• Plot 2
 - No surface flow
 - Macropore (d = 1-2 cm)
 - Flow = 75 mm/h
 - Max flow = 103 mm/h
 - Quick drainage

• Comparison with large TDR experiment
 - Hypothesis: spatial variability

© 2005, Christophe Joerin, Bern
Dye tracing

• Motivation
 - Test the hypothesis of macropore flows
 - Does the structure of the macropore network allow the flow of soil water through all the hillslope?

• Procedure
 - Injection of 2 tracers (sulforhodamin G and uranin) at respectively 2 depths (40 and 120 cm)
 - Determination of tracer concentrations by using a field fluorimeter
 - Environmental tracing experiment in parallel
 - Comparison of results

• Configuration

© 2005, Christophe Joerin, Bern
Results of the dye tracing experiment

- **Rapid reaction**
 - High tracer velocity
 - Sulforhodamin = 5610 mm/h
 - Uranin = 1670 mm/h
 - Saturated hydraulic conductivity
 - 36 - 108 mm/h
 - No diffuse flow

- **Comparison with the hydrograph separation**
 - Sulforhodamin - soil water component
 - Similar reaction
 - Conclusion
 - Contribution of soil water
 - Water contained in hillslopes next to the stream
 - Preferential flows
 - Macropores
 » Chemical signature?

© 2005, Christophe Joerin, Bern
Conceptual model

- Proposition of a conceptual model
 - As a general hypothesis
 - Based on the present results and the physical properties of the catchment

- Dry conditions
 - Groundwater flows

- Start of precipitation
 - Mixture of precipitation and groundwater
 - Precipitation on saturated areas
 - Groundwater ridging
 - Preferential flows
 - Increase of the soil water content
 - Rapid elevation of the groundwater
 - Velocity of kinematic waves

- Saturation of the soil
 - Activation of macropore flows
 - Mixture of precipitation and soil water
Conclusions

• Main contribution
 – Association of different types of measurements
 – Environmental tracing
 • Information at the catchment scale
 • No identification of mechanism
 – Punctual measurements
 • Limited spatial vision of processes
 – Combination of information from different scales
 – Better processes identification

• Perspectives
 – Consideration of the environmental tracing information in hydrological models
 • Calibration phase
 • Adaptation of the structure
 – Reproduction of hydrological and chemical responses
 – Better conceptualization of processes in models
 – Improvement of streamflow simulations?
 » Number of parameters
 – More realistic previsions
 » Better evaluation of the impact of climate change